题目内容

【题目】如图,在四边形ABCD中,AD//BC,∠ABC=∠ADC=90°,对角线AC,BD交于点O,DE平分∠ADC交BC于点E,连接OE.

(1)求证:四边形ABCD是矩形;
(2)若AB=2,求△OEC的面积.

【答案】
(1)

证明:∵AD//BC,

∴∠ABC+∠BAD=180°,

∵∠ABC=90°,

∴∠BAD=90°,

∴∠BAD=∠ABC=∠ADC=90°,

∴四边形ABCD是矩形


(2)

解:作OF⊥BC于F.

∵四边形ABCD是矩形,

∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,

∴AO=BO=CO=DO,

∴BF=FC,

∴OF= CD=1,

∵DE平分∠ADC,∠ADC=90°,

∴∠EDC=45°,

在Rt△EDC中,EC=CD=2,

∴△OEC的面积= ECOF=1.


【解析】(1)只要证明三个角是直角即可解决问题;(2)作OF⊥BC于F.求出EC、OF的长即可;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网