题目内容
【题目】如图,在平面直角坐标系中,△ABC 的一边 AB 在 x 轴上,∠ABC=90°,点 C(4,8) 在第一象限内,AC 与 y 轴交于点 E,抛物线 y=+bx+c 经过 A、B 两点,与 y 轴交于点 D(0,﹣6).
(1)请直接写出抛物线的表达式;
(2)求 ED 的长;
(3)若点 M 是 x 轴上一点(不与点 A 重合),抛物线上是否存在点 N,使∠CAN=∠MAN.若存在,请直接写出点 N 的坐标;若不存在,请说明理由.
【答案】(1)y=x﹣6;(2);(3) S=﹣m2+m+26(﹣2<m<4);(4)满足条件的N点坐标为(,);(,﹣).
【解析】(1)先确定B(4,0),再利用待定系数法求出抛物线解析式为y=x2-x-6;
(2)先利用待定系数法求得直线AC的解析式为y=x+,则可确定E(0,),然后计算DE的长;
(3)如图2,当点M在x的正半轴,AN交BC于F,作FH⊥AC于H,根据角平分线的性质得FH=FB,易得AH=AB=6,再利用∠ACB的余弦可求出CF=5,则F(4,3),接着求出直线AF的解析式为y=x+1,于是通过解方程组,得N点坐标为(,);当点M′在x的负半轴上时,AN′交y轴与G,先在证明∴Rt△OAG∽Rt△BFA,在利用相似比求出OG=4,所以G(0,-4),接下来利用待定系数法求出直线AG的解析式为y=-2x-4,然后解方程组得N′的坐标.
(1)∵BC⊥x轴,点C(4,8),
∴B(4,0),
把B(4,0),C(0,﹣6)代入y=+bx+c得,解得,
∴抛物线解析式为y=x﹣6;
(2)设直线AC的解析式为y=px+q,
把A(﹣2,0),C(4,8)代入得,解得,
∴直线AC的解析式为y=x+,
当x=0时,y=x+=,则E(0,),
∴DE=+6=;
(3)如图2,当点M在x的正半轴,AN交BC于F,作FH⊥AC于H,
则FH=FB,
易得AH=AB=6,
∵AC=,
∴CH=10﹣6=4,
∵cos∠ACB=,
∴CF=,
∴F(4,3),
易得直线AF的解析式为y=x+1,
解方程组得或,
∴N点坐标为(,);
当点M′在x的负半轴上时,AN′交y轴与G,
∵∠CAN′=∠M′AN′,
∴∠KAM′=∠CAK,
而∠CAN=∠MAN,
∴∠KAC+∠CAN=90°,
而∠MAN+∠AFB=90°,
∴∠KAC=∠AFB,
而∠KAM′=∠GAO,
∴∠GAO=∠AFB,
∴Rt△OAG∽Rt△BFA,
∴,即,解得OG=4,
∴G(0,﹣4),
易得直线AG的解析式为y=﹣2x﹣4,
解方程组得或,
∴N′的坐标为(,﹣),
综上所述,满足条件的N点坐标为(,);(,﹣).
【题目】某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过时,按计算,月用水量超过时,其中的仍按元/计算,超过部分按元/计算.设某户家庭月用水量.
(1)用含的式子表示:
当时,水费为 元;当时,水费为 元;
(2)
月份 | 4月 | 5月 | 6月 |
用水量 |
小花家第二季度用水情况如上表,小花家这个季度共缴纳水费元,请你求出小花家月份用水量的值?
【题目】某校八年级两个班,各选派10名学生参加学校举行的“建模”大赛预赛,各参赛选手的成绩如下:
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99.
通过整理,得到数据分析表如下:
班级 | 最高分 | 平均分 | 中位数 | 众数 | 方差 |
八(1)班 | 100 | 93 | 93 | 12 | |
八(2)班 | 99 | 95 | 8.4 |
(1)直接写出表中、、的值为:_____,_____,_____;
(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持八(2)班成绩好的理由;
(3)学校从平均数、中位数、众数、方差中选取确定了一个成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果八(2)班有一半的学生能够达到“优秀”等级,认为这个成绩应定为_____分.