题目内容

【题目】如图,下列条件中不能判定AB∥CD的是(  )

A. ∠3=∠4 B. ∠1=∠5 C. ∠4+∠5=180° D. ∠3+∠5=180°

【答案】C

【解析】

根据同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行;可以进行判定.

A选项,因为∠3和∠4一组内错角,且∠3=∠4,根据内错角相等两直线平行可以判定AB∥CD,不符合题意,

B选项,因为∠1和∠5 是一组同位角,且∠1=∠5根据同位角相等两直线平行可以判定AB∥CD,不符合题意,

C选项,因为∠4和∠5一组邻补角,所以∠4+∠5=180°不能判定两直线平行,

D选项,因为∠3和∠5是一组同旁内角,且∠3+∠5=180°,根据根据同旁内角互补两直线平行可以判定AB∥CD,不符合题意,

故选C.

练习册系列答案
相关题目

【题目】如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).

(1)求反比例函数与一次函数的表达式;

(2)结合图像写出不等式的解集;

(3)点E为y轴上一个动点,若SAEB=10,求点E的坐标.

【答案】(1)y=,y=-x+7(2)0<x<2或x>12(3)点E的坐标为(0,5)或(0,9)

【解析】试题分析:(1)把点A的坐标代入反比例函数解析式求出反比例函数的解析式把点B的坐标代入已求出的反比例函数解析式得出n的值,得出点B的坐标,再把AB的坐标代入直线求出kb的值,从而得出一次函数的解析式

(2)设点E的坐标为(0,m),连接AEBE先求出点P的坐标(0,7),得出PE=|m﹣7|,根据SAEB=SBEPSAEP=10,求出m的值从而得出点E的坐标.

解:(1)把点A(2,6)代入y=,得m=12,则y=

把点B(n,1)代入y=,得n=12,则点B的坐标为(12,1).

由直线y=kx+b过点A(2,6),点B(12,1),

则所求一次函数的表达式为y=﹣x+7.

(2)

(3)如图,直线AB与y轴的交点为P,设点E的坐标为(0,m),连接AE,BE,则点P的坐标为(0,7).∴PE=|m﹣7|.

∵SAEB=SBEP﹣SAEP=10,∴×|m﹣7|×(12﹣2)=10.

∴|m﹣7|=2.∴m1=5,m2=9.∴点E的坐标为(0,5)或(0,9).

型】解答
束】
26

【题目】太仓市为了加快经济发展,决定修筑一条沿江高速铁路,为了使工程提前半年完成,需要将工作效率提高25%。原计划完成这项工程需要多少个月?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网