题目内容

【题目】如图,在矩形ABCD中,已知AD>AB,在边AD上取点E,连结CE,过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=2,AE=3,AD=7,求线段AF的长.

【答案】
(1)证明:∵四边形ABCD为矩形,

∴∠A=∠D=90°,

∵CE⊥EF,

∴∠AEF+∠DEC=90°,

又∵∠F+∠AEF=90°,

∴∠F=∠DEC,

∴△AEF∽△DCE


(2)解:∵四边形ABCD为矩形,

∴DC=AB=2,

∵AE=3,AD=7,

∴ED=AD﹣AE=4,

∵△AEF∽△DCE,

∴AF=6.


【解析】(1)由四边形ABCD为矩形,于是得到∠A=∠D=90°,根据垂直的定义得到∠AEF+∠DEC=90°,于是得到∠F=∠DEC,即可得到结论;(2)由四边形ABCD为矩形,得到DC=AB=2,求出ED=AD﹣AE=4,根据相似三角形的性质得到 ,代入数据即可得到结论.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网