题目内容
【题目】如图,∠MON=60°,OF平分∠MON,点A在射线OM上, P,Q是射线ON上的两动点,点P在点Q的左侧,且PQ=OA,作线段OQ的垂直平分线,分别交OM,OF,ON于点D,B,C,连接AB,PB.
(1)依题意补全图形;
(2)判断线段 AB,PB之间的数量关系,并证明;
(3)连接AP,设,当P和Q两点都在射线ON上移动时,是否存在最小值?若存在,请直接写出的最小值;若不存在,请说明理由.
【答案】(1)补全图形见解析; (2)AB=PB.证明见解析;(3)存在,.
【解析】
(1)根据题意补全图形如图1,
(2)结论:AB=PB.连接BQ,只要证明△AOB≌△PQB即可解决问题;
(3)连接BQ.只要证明△ABP∽△OBQ,即可推出 ,由∠AOB=30°,推出当BA⊥OM时, 的值最小,最小值为 ,由此即可解决问题.
解:(1)如图1,
(2)AB=PB.
证明:如图,连接BQ.
∵BC的垂直平分OQ,
∴ OB =BQ,
∴∠BOP=∠BQP.
又∵ OF平分∠MON,
∴∠AOB = ∠BOP.
∴∠AOB = ∠BQP.
又∵PQ=OA,
∴ △AOB≌△PQB,
∴AB=PB.
(3))∵△AOB≌△PQB,
∴∠OAB=∠BPQ,
∵∠OPB+∠BPQ=180°,
∴∠OAB+∠OPB=180°,∠AOP+∠ABP=180°,
∵∠MON=60°,
∴∠ABP=120°,
∵BA=BP,
∴∠BAP=∠BPA=30°,
∵BO=BQ,
∴∠BOQ=∠BQO=30°,
∴△ABP∽△OBQ,
∴,
∵∠AOB=30°,
∴当BA⊥OM时,的值最小,最小值为,
∴k=.
练习册系列答案
相关题目