题目内容
【题目】如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).
(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.
【答案】(1),y=x+1(2)x<﹣2或0<x<1
【解析】试题分析:(1)把A(1,﹣k+4)代入解析式y=,即可求出k的值;把求出的A点坐标代入一次函数y=x+b的解析式,即可求出b的值;从而求出这两个函数的表达式;
(2)将两个函数的解析式组成方程组,其解即为另一点的坐标.当一次函数的值小于反比例函数的值时,直线在双曲线的下方,直接根据图象写出一次函数的值小于反比例函数的值x的取值范围.
试题解析:(1)∵已知反比例函数经过点A(1,﹣k+4),
∴,即﹣k+4=k,
∴k=2,
∴A(1,2),
∵一次函数y=x+b的图象经过点A(1,2),
∴2=1+b,
∴b=1,
∴反比例函数的表达式为.
一次函数的表达式为y=x+1.
(2)由,
消去y,得x2+x﹣2=0.
即(x+2)(x﹣1)=0,
∴x=﹣2或x=1.
∴y=﹣1或y=2.
∴或.
∵点B在第三象限,
∴点B的坐标为(﹣2,﹣1),
由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.
练习册系列答案
相关题目