题目内容

【题目】如图,在直角梯形ABCD中,AD⊥DC,AB∥DC,AB=BC,AD与BC延长线交于点F,G是DC延长线上一点,AG⊥BC于E,

(1)求证:CF=CG;

(2)连接DE,若BE=4CE,CD=2求DE的长.

【答案】(1)证明见解析;(2)DE=

【解析】分析:(1)连接AC,首先可通过DG∥AB,AB=BC证得AC为∠DCE的角平分线,从而得到△ADC≌△AEC,可知CD=CE;再由∠FDC=∠GEC=90°,∠FCD=∠GCE,可判定△FDC≌△GEC,即可得CF=CG.(2)由已知条件,可求得AE、AC的长,法一:可利用C、A分别是DE垂直平分线上的点,并通过解直角三角形AEC的面积求得EH的长,从而得到ED的长.法二:通过证明△ADE∽△BAC可得,从而求得DE的长.

本题解析:

(1)证明:连接AC

∵DC∥AB,AB=BC, ∴∠1=∠CAB, ∠CAB=∠2,

∴∠1=∠2,∠ADC=∠AEC=90°,AC=AC,

∴△ADC≌△AEC,∴CD=CE

∵∠FDC=∠GEC=90°, ∠3=∠4, ∴△FDC≌△GEC,

∴CF=CG,

(2)解:由(1)知,CE=CD=2,∴BE=4CE=8,∴AB=BC=CE+BE=10,

∴在RT△ABE中,AE= ,

∴在RT△ACE中,AC= ,

法一:由(1)知,△ADC≌△AEC,∴CD=CE,AD=AE,

∴C、A分别是DE垂直平分线上的点,

∴DE⊥AC,DE=2EH,

在RT△AEC中, ,

,

∴DE=2EH=2× .

法二:在RT△AEC中,∠2+∠6=90°,

在RT△AEH中,∠5+∠6=90°,∴∠2=∠5,

∵AD=AE,AB=BC, ∴∠5=∠7,∠CAB=∠2

∴∠7=∠CAB,∴△ADE∽△BAC,

, 即 ,

∴DE= .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网