题目内容
【题目】如图,点D,E分别在AB,AC上,DE∥BC,F是AD上一点,FE的延长线交BC的延长线于点G.求证:
(1)∠EGH>∠ADE;
(2)∠EGH=∠ADE+∠A+∠AEF.
【答案】(1)证明见解析;(2)证明见解析.
【解析】试题分析:(1)根据三角形的外角性质得出∠EGH>∠B,再根据平行线的性质得出∠B=∠ADE,即可得出答案;(2)根据三角形的外角性质得出∠BFE=∠A+∠AEF,∠EGH=∠B+∠BFE,根据平行线的性质得出∠B=∠ADE,即可得出答案.
试题解析:
证明:(1)因为∠EGH是△FBG的外角,
所以∠EGH>∠B.
又因为DE∥BC,
所以∠B=∠ADE.
所以∠EGH>∠ADE.
(2)因为∠BFE是△AFE的外角,
所以∠BFE=∠A+∠AEF.
因为∠EGH是△BFG的外角,
所以∠EGH=∠B+∠BFE.
所以∠EGH=∠B+∠A+∠AEF.
又因为DE∥BC,所以∠B=∠ADE,
所以∠EGH=∠ADE+∠A+∠AEF.
练习册系列答案
相关题目
【题目】数学李老师给学生出了这样一个问题:探究函数y= 的图象与性质,小斌根据学习函数的经验,对函数y= 的图象与性质进行了探究.下面是小斌的探究过程,请您补充完成:
(1)函数y= 的自变量x的取值范围是:
(2)列出y与x的几组对应值,请直接写出m的值,m= .
x | … | ﹣5 | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣ | 0 | 1 | 2 | m | 4 | 5 | … |
y | … |
|
|
| 2 | 3 | ﹣1 | 0 |
|
|
|
|
| … |
(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)结合函数的图象,写出函数y= 的一条性质.