题目内容
【题目】如图1,在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(a,0)点 B(0,b),且a、b满足a2+4a+4+|2a+b|=0
(1)a= ;b= .
(2)点 P 在直线AB的右侧,且∠APB=45°
①若点P在x轴上,则点P的坐标为 ;
②若△ABP 为直角三角形,求点P的坐标;
(2)如图2,在(2)的条件下,点P在第四象限,∠BAP=90°,AP与y轴交于点M,BP与x轴交于点N,连接MN,求证:MP平分△BMN的一个外角.
【答案】(1)﹣2,4;(2)①(4,0);②P(4,2)或(2,﹣2);(3)详见解析.
【解析】
(1)利用非负数的和等于0,即可建立方程组求出a,b;
(2)①利用等腰直角三角形的性质即可得出结论;
②分两种情况,利用等腰三角形的性质,及全等三角形的性质求出PC,BC,即可得出结论;
(3)先判断出∠PMG=∠AHP,再SSS判断出△PMN≌△PHN,得出∠AHP=∠PMN,即可得出结论.
(1)∵a2+4a+4+|2a+b|=0,
∴(a+2)2+|2a+b|=0,
∴a=﹣2,b=4,
故答案为:﹣2,4;
(2)①如图 1,由(1)知,b=4,
∴B(0,4),
∴OB=4,
点 P 在直线 AB 的右侧,且在 x 轴上,
∵∠APB=45°,
∴OP=OB=4,
∴P(4,0),
故答案为:(4,0);
②由(1)知 a=﹣2,b=4,
∴A(﹣2,0),B(0,4),
∴OA=2,OB=4,
∵△ABP 是直角三角形,且∠APB=45°,
∴只有∠ABP=90°或∠BAP=90°,
如图 3,
Ⅰ、当∠ABP=90°时,∵∠APB=∠BAP=45°,
∴AB=PB ,
过点 P 作 PC⊥OB 于 C,
∴∠BPC+∠CBP=90°,
∵∠CBP+∠ABO=90 °,
∴∠ABO=∠BPC,
在△AOB和△BCP中,
∴△AOB≌△BCP(AAS),
∴PC=OB=4,BC=OA=2,
∴OC=OB﹣BC=2,
∴P(4,2),
Ⅱ、当∠BAP=90°时, 过点 P'作 P'D⊥OA 于 D,
同Ⅰ的方法得,△ADP'≌△BOA,
∴DP'=OA=2,AD=OB=4,
∴OD=AD﹣OA=2,
∴P'(2,﹣2);
即:满足条件的点 P(4,2)或(2,﹣2);
(3)如图 2,由(2)知点 P(2,﹣2),
∵A(﹣2,0),
∴直线 AP 的解析式为 y=﹣x﹣1,
∴M(0,﹣1),
∴BM=5,
同理:直线 BP 的解析式为 y=﹣3x+4,
∴N(,0),
∴MN=,
过点 P 作 PH∥AB 交 x 轴于 H,
∵∠BAP=90°,
∴∠BAO+∠PAH=90°,
∴∠BAO+∠ABM=90°,
∴∠ABM=∠PAH,
在△ABM和△PAH中,
,
∴△ABM≌△PAH(ASA),
∴∠AMB=∠PHA,AH=BM=5,
∴∠PMG=∠PHA,OH=AH﹣OA=3,
∴H(3,0),
∴NH=3﹣==MN,
∵P(2,﹣2),M(0,﹣1),H(3,0),
∴PM=,PH=,
∴PM=PH,
∴△PNM≌△PNH(SSS),
∴∠AHP=∠PMN,
∴∠PMG=∠PMN,
即:MP 是△BMN 的一个外角的平分线.