题目内容
【题目】如图某超市举行“翻牌”抽奖活动,在一张木板上共有6个相同的牌,其分别对应价值为2元、5元、8元、10元、20元和50元的奖品.
(1)小雷在该抽奖活动中随机翻一张牌,求抽中10元奖品的概率;
(2)如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,求两次抽中的奖品的总价值大于14元的概率.
【答案】
(1)解:共有6个可能的结果,抽中10元奖品的结果有1个,
∴抽中10元奖品的概率为
(2)解:画树状图:
共有30种可能的结果,两次抽中的奖品的总价值大于14元的结果有22个,
∴两次抽中的奖品的总价值大于14元的概率= = .
【解析】(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用1除以6,即可得出结果.(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用两次抽中的奖品的总价值大于14元的情况的数量除以所有情况的数量即可.
【考点精析】关于本题考查的列表法与树状图法,需要了解当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率才能得出正确答案.
练习册系列答案
相关题目