题目内容
【题目】如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1 , S2 , S3三部分,则S1:S2:S3=( )
A.1:2:3
B.1:4:9
C.1:3:5
D.无法确定
【答案】C
【解析】解:∵DE∥FG∥BC, ∴△ADE∽△AFG∽△ABC,
∴S△ADE:S△AFG:S△ABC=AD2:(2AD)2:(3AD)2=1:4:9;
设S△ADE=1,则S△AFG=4,S△ABC=9,
∴S1=S△ADE=1,S2=S△AFG﹣S△ADE=3,S3=S△ABC﹣S△AFG=5,
即S1:S2:S3=1:3:5;
故选:C.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.
练习册系列答案
相关题目