题目内容
如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作A(1)求证:四边形DEBF是菱形;
(2)请判断四边形AGBD是什么特殊四边形?并加以证明.
分析:(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;
(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.
(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.
解答:(1)证明:∵四边形ABCD是平行四边形
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=
AB,DF=
CD,
∴BE=BF,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=
AB=AD,
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.
(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
∴AB∥CD且AB=CD,AD∥BC且AD=BC
E,F分别为AB,CD的中点,
∴BE=
| 1 |
| 2 |
| 1 |
| 2 |
∴BE=BF,
∴四边形DEBF是平行四边形
在△ABD中,E是AB的中点,
∴AE=BE=
| 1 |
| 2 |
而∠DAB=60°
∴△AED是等边三角形,即DE=AE=AD,
故DE=BE
∴平行四边形DEBF是菱形.
(2)解:四边形AGBD是矩形,理由如下:
∵AD∥BC且AG∥DB
∴四边形AGBD是平行四边形
由(1)的证明知AD=DE=AE=BE,
∴∠ADE=∠DEA=60°,
∠EDB=∠DBE=30°
故∠ADB=90°
∴平行四边形AGBD是矩形.
点评:本题考查了矩形的性质、等边三角形的判定及性质、三角形中位线定理等知识,解题的关键是弄清菱形及矩形的判定方法.
练习册系列答案
相关题目
| 2 |
| 3 |
| 5 |
| A、AC⊥BD |
| B、四边形ABCD是菱形 |
| C、△ABO≌△CBO |
| D、AC=BD |