题目内容

【题目】如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.
(1)求证:DE=AB.
(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求 的长.

【答案】
(1)证明:∵四边形ABCD是矩形,

∴∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,

∴∠EAD=∠AFB,

∵DE⊥AF,

∴∠AED=90°,

在△ADE和△FAB中,

∴△ADE≌△FAB(AAS),

∴DE=AB;


(2)解:连接DF,如图所示:

在△DCF和△ABF中,

∴△DCF≌△ABF(SAS),

∴DF=AF,

∵AF=AD,

∴DF=AF=AD,

∴△ADF是等边三角形,

∴∠DAE=60°,

∵DE⊥AF,

∴∠AED=90°,

∴∠ADE=30°,

∵△ADE≌△FAB,

∴AE=BF=1,

∴DE= AE=

的长= =


【解析】(1)由矩形的性质得出∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,得出∠EAD=∠AFB,由AAS证明△ADE≌△FAB,得出对应边相等即可;(2)连接DF,先证明△DCF≌△ABF,得出DF=AF,再证明△ADF是等边三角形,得出∠DAE=60°,∠ADE=30°,由AE=BF=1,根据三角函数得出DE,由弧长公式即可求出 的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网