题目内容
【题目】在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.
(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;
(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.
【答案】(1)PB=PQ.证明见解析;(2)PB=PQ.证明见解析.
【解析】试题分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;
(2)证明思路同(1).
试题解析:(1)PB=PQ,
证明:过P作PE⊥BC,PF⊥CD,
∵P,C为正方形对角线AC上的点,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四边形PECF为正方形,
∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ;
(2)PB=PQ,
证明:过P作PE⊥BC,PF⊥CD,
∵P,C为正方形对角线AC上的点,
∴PC平分∠DCB,∠DCB=90°,
∴PF=PE,
∴四边形PECF为正方形,
∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,
∴∠BPE=∠QPF,
∴Rt△PQF≌Rt△PBE,
∴PB=PQ.
练习册系列答案
相关题目