题目内容
【题目】为迎接国庆节,某商店购进了一批成本为每件30元的纪念商品.经调查发现,该商品每天的销售量(件与销售单价(元满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量与销售单价的函数关系式;
(2)若商店按不低于成本价,且不高于60元的单价销售,则销售单价定为多少,才能使销售该商品每天获得的利润(元最大?最大利润是多少?
【答案】(1);(2)销售单价定为55元时,该商店每天获得的利润最大,最大利润是1250元.
【解析】
(1)将点(30,100)、(45,700)代入--次函数表达式,即可求解;
(2)由题意得 ,即可求解.
(1)设销售量与销售单价之间的函数关系式为,
将点、代入,得.
解得.
∴函数的关系式为:
(2)由题意得
,且30≤x≤60.
当时,取得最大值,此时.
∴销售单价定为55元时,该商店每天获得的利润最大,最大利润是1250元.
【题目】某地质量监管部门对辖区内的甲、乙两家企业生产的某同类产品进行检查,分别随机抽取了50件产品并对某一项关键质量指标做检测,获得了它们的质量指标值s,并对样本数据(质量指标值s)进行了整理、描述和分析.下面给出了部分信息.
a.该质量指标值对应的产品等级如下:
质量指标值 | |||||
等级 | 次品 | 二等品 | 一等品 | 二等品 | 次品 |
说明:等级是一等品,二等品为质量合格(其中等级是一等品为质量优秀).
等级是次品为质量不合格.
b.甲企业样本数据的频数分布统计表如下(不完整).
c.乙企业样本数据的频数分布直方图如下.
甲企业样本数据的频数分布表
分组 | 频数 | 频率 |
2 | 0.04 | |
m | ||
32 | n | |
0.12 | ||
0 | 0.00 | |
合计 | 50 | 1.00 |
乙企业样本数据的频数分布直方图
d.两企业样本数据的平均数、中位数、众数、极差、方差如下:
平均数 | 中位数 | 众数 | 极差 | 方差 | |
甲企业 | 31.92 | 32.5 | 34 | 15 | 11.87 |
乙企业 | 31.92 | 31.5 | 31 | 20 | 15.34 |
根据以上信息,回答下列问题:
(1)m的值为________,n的值为________.
(2)若从甲企业生产的产品中任取一件,估计该产品质量合格的概率为________;若乙企业生产的某批产品共5万件,估计质量优秀的有________万件;
(3)根据图表数据,你认为________企业生产的产品质量较好,理由为______________.(从某个角度说明推断的合理性)