题目内容
【题目】某批乒乓球的质量检验结果如下:
抽取的乒乓球数n | 200 | 500 | 1000 | 1500 | 2000 |
优等品频数m | 188 | 471 | 946 | 1426 | 1898 |
优等品频率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于, 问至少取出了多少个黑球?
【答案】(1)如图见解析;(2)0.946;(3)①;②至少取出了9个黑球.
【解析】
(1)根据统计表中的数据,先描出各点,然后折线连结即可;
(2)根据频率估计概率,频率都在0.946左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.946;
(3)①用黄球的个数除以球的总个数即可;
②设从袋中取出了x个黑球,根据搅拌均匀后使从袋中摸出一个是黄球的概率不小于, 列出不等式,解不等式即可.
(1)如图;
(2)这批乒乓球“优等品”概率的估计值是0.946;
(3)①∵袋中一共有球5+13+22=40个,其中有5个黄球,
∴从袋中摸出一个球是黄球的概率为:;
②设从袋中取出了x个黑球,由题意得
≥,解得x≥8,
故至少取出了9个黑球.
练习册系列答案
相关题目