题目内容
【题目】如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC .
(1)求点C的坐标,并求出直线AC的关系式.
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】(1)C(﹣3,1),直线AC:y=x+2;(2)证明见解析;(3)N(﹣,0).
【解析】试题分析:(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使直线PN平分△BCM的面积,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.
试题解析:解:(1)如图1,作CQ⊥x轴,垂足为Q,
∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,
∴∠OAB=∠QBC,
又∵AB=BC,∠AOB=∠Q=90°,
∴△ABO≌△BCQ,
∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,
∴C(﹣3,1),
由A(0,2),C(﹣3,1)
可知,直线AC:y=x+2;
(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,
∵AC=AD,AB⊥CB,
∵BC=BD,
∴△BCH≌△BDF,
∴BF=BH=2,
∴OF=OB=1,
∵DG=OB,
∴△BOE≌△DGE,
∴BE=DE;
(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,
∴P(﹣,),由y=x+2知M(﹣6,0),
∴BM=5,则S△BCM=.
假设存在点N使直线PN平分△BCM的面积,
则BN·=×,
∴BN=,ON=,
∴BN<BM,
∴点N在线段BM上,
∴N(﹣,0).