题目内容

【题目】数学活动﹣旋转变换

(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
①猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
②连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

【答案】
(1)

解:如图①中

∵△A′B′C是由△ABC旋转得到,

∴∠A′B′C=∠ABC=130°,CB=CB′,

∴∠CBB′=∠CB′B,∵∠BCB′=50°,

∴∠CBB′=∠CB′B=65°,

∴∠A′B′B=∠A′B′C﹣∠BB′C=65°


(2)

解:①结论:直线BB′、是⊙A′的切线.理由:如图②中

∵∠A′B′C=∠ABC=150°,CB=CB′,

∴∠CBB′=∠CB′B,∵∠BCB′=60°,

∴∠CBB′=∠CB′B=60°,

∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.

∴AB′⊥BB′,

∴直线BB′、是⊙A′的切线.

②∵在RT△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,

∴A′B= =


(3)

解:如图③中

当α+β=180°时,直线BB′、是⊙A′的切线.

理由:∵∠A′B′C=∠ABC=α,CB=CB′,

∴∠CBB′=∠CB′B,∵∠BCB′=2β,

∴∠CBB′=∠CB′B=

∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.

∴AB′⊥BB′,

∴直线BB′、是⊙A′的切线.

在△CBB′中∵CB=CB′=n,∠BCB′=2β,

∴BB′=2nsinβ,

在RT△A′BB′中,A′B=


【解析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可.(Ⅱ)在RT△ABB′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线BB′、是⊙A′的切线.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在RT△A′B′B中利用勾股定理即可.本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网