题目内容
【题目】已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.
【答案】证明:∵四边形ABCD是菱形,
∴AD=CD,
∵点E、F分别为边CD、AD的中点,
∴AD=2DF,CD=2DE,
∴DE=DF,
在△ADE和△CDF中, ,
∴△ADE≌△CDF(SAS).
【解析】由菱形的性质得出AD=CD,由中点的定义证出DE=DF,由SAS证明△ADE≌△CDF即可.此题主要考查了全等三角形的判定、菱形的性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.
【考点精析】根据题目的已知条件,利用菱形的性质的相关知识可以得到问题的答案,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.
练习册系列答案
相关题目
【题目】我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化 | 示例图形 | 与对应线段有关的结论 | 与对应点有关的结论 |
平移 | AA′=BB′ | ||
轴对称 | |||
旋转 | AB=A′B′;对应线段AB和A′B′所在的直线相交所成的角与旋转角相等或互补. |