题目内容

【题目】如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6 ,则FG的长为

【答案】3
【解析】解:∵四边形ABCD是菱形,∠BAD=120°, ∴AB=BC=CD=AD,∠CAB=∠CAD=60°,
∴△ABC,△ACD是等边三角形,
∵EG⊥AC,
∴∠AEG=∠AGE=30°,
∵∠B=∠EGF=60°,
∴∠AGF=90°,
∴FG⊥BC,
∴2SABC=BCFG,
∴2× ×(6 2=6 FG,
∴FG=3
故答案为3

首先证明△ABC,△ADC都是等边三角形,再证明FG是菱形的高,根据2SABC=BCFG即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网