题目内容
【题目】在△ABC中,∠B=∠C,AB垂直平分线与AC所在直线相交所得锐角为 50°,求∠B的大小.
【答案】70°或20°.
【解析】
根据△ABC中∠A为锐角与钝角分为两种情况,当∠A为锐角时,∠B等于70°,当∠A为钝角时,∠B等于20°.
根据△ABC中∠A为锐角与钝角,分为两种情况:
①如图:当∠A为锐角时,
∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,
∴∠A=40°,
∵∠B=∠C,∠A+∠B+∠C=180°,
∴∠B=(180°-50°)=70°.
②当∠A为钝角时,如图:
∵AB的垂直平分线与AC所在的直线相交所得到锐角为50°,
∴∠1=40°,
∴∠BAC=140°,
∵∠B=∠C,∠1=∠B+∠C,
∴∠B=20°.
【题目】表为小洁打算在某电信公司购买一支MAT手机与搭配一个门号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费.若小洁每个月的通话费均为x元,x为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x至少为多少才会使得选择乙方案的总花费比甲方案便宜?( )
甲方案 | 乙方案 | |
门号的月租费(元) | 400 | 600 |
MAT手机价格(元) | 15000 | 13000 |
注意事项:以上方案两年内不可变更月租费 |
A.500
B.516
C.517
D.600
【题目】已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为
②该函数的一条性质: