题目内容
【题目】如图,在矩形中,
,
,将矩形
沿
折叠,使点
与点
重合,则折痕
的长为________.
【答案】
【解析】
设BE=x,表示出CE=16-x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.
设BE=x,则CE=BCBE=16x,
∵沿EF翻折后点C与点A重合,
∴AE=CE=16x,
在Rt△ABE中,
即
解得x=6,
∴AE=166=10,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF=10,
过点E作EH⊥AD于H,则四边形ABEH是矩形,
∴EH=AB=8,
AH=BE=6,
∴FH=AFAH=106=4,
在Rt△EFH中,
故答案为:
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目