题目内容
【题目】如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.
(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;
(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.
【答案】(1)当DC=4时,△ABD≌△DCE,理由详见解析;(2)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.
【解析】
(1)当DC=4时,利用∠DEC+∠EDC=140,∠ADB+∠EDC=140,得到∠ADB=∠DEC,根据AB=DC=4,证明△ABD≌△DCE;
(2)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.
解:(1)当DC=4时,△ABD≌△DCE,
理由:∵AB=AC=4,∠BAC=100,
∴∠B=∠C=40,
∴∠DEC+∠EDC=140,
∵∠ADE=40,
∴∠ADB+∠EDC=140,
∴∠ADB=∠DEC,
在△ABD和△DCE中,
,
∴△ABD≌△DCE(AAS);
(2)当∠BDA的度数为110或80时,△ADE的形状是等腰三角形,
当DA=DE时,∠DAE=∠DEA=70,
∴∠BDA=∠DAE+∠C=70+40=110;
当AD=AE时,∠AED=∠ADE=40,
∴∠DAE=100,
此时,点D与点B重合,不合题意;
当EA=ED时,∠EAD=∠ADE=40,
∴∠AED=100,
∴∠EDC=∠AED﹣∠C=60,
∴∠BDA=180﹣40﹣60=80
综上所述,当∠BDA的度数为110或80时,△ADE的形状是等腰三角形.
【题目】用指定方法解下列一元二次方程.
(1)x2﹣36=0(直接开平方法)
(2)x2﹣4x=2(配方法)
(3)2x2﹣5x+1=0(公式法)
(4)(x+1)2+8(x+1)+16=0(因式分解法)
【题目】丽水苛公司将“丽水山耕”农副产品运往杭州市场进行销售.记汽车行驶时间为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:
v(千米/小时) | 75 | 80 | 85 | 90 | 95 |
t(小时) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;
(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市?请说明理由:
(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.