题目内容

如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,∠C=45°,求∠DAE与∠AEC的度数.
方法1:
∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,
∴∠BAC=60°,
∵AE平分∠BAC,
∴∠BAE=∠CAE=
1
2
∠BAC=
1
2
×60°=30°,
∵AD是BC上的高,
∴∠B+∠BAD=90°,
∴∠BAD=90°-∠B=90°-75°=15°,
∴∠DAE=∠BAE-∠BAD=30°-15°=15°,
在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°;

方法2:同方法1,得出∠BAC=60°.
∵AE平分∠BAC,
∴∠EAC=
1
2
∠BAC=
1
2
×60°=30°.
∵AD是BC上的高,
∴∠C+∠CAD=90°,
∴∠CAD=90°-45°=45°,
∴∠DAE=∠CAD-∠CAE=45°-30°=15°.
∵∠AEC+∠C+∠EAC=180°,
∴∠AEC+30°+45°=180°,
∴∠AEC=105°.
答:∠DAE=15°,∠AEC=105°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网