题目内容
如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则:
(1)∠A1=______度;
(2)∠A2013=______度.

(1)∠A1=______度;
(2)∠A2013=______度.

(1)由三角形的外角性质得,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,
∵∠ABC和∠ACD的平分线交于点A1,
∴∠A1BC=
∠ABC,∠A1CD=
∠ACD,
∴∠A1+∠A1BC=
(∠A+∠ABC),
∴∠A1=
∠A,
∵∠A=m°,
∴∠A1=
m°;
(2)同理可得:∠A2=
∠A1=
∠A,
∠A3=
∠A2=
∠A,
…,
∠A2013=
∠A,
∵∠A=m°,
∴∠A2013=
m°.
故答案为:
m;
m.
∵∠ABC和∠ACD的平分线交于点A1,
∴∠A1BC=
1 |
2 |
1 |
2 |
∴∠A1+∠A1BC=
1 |
2 |
∴∠A1=
1 |
2 |
∵∠A=m°,
∴∠A1=
1 |
2 |
(2)同理可得:∠A2=
1 |
2 |
1 |
22 |
∠A3=
1 |
2 |
1 |
23 |
…,
∠A2013=
1 |
22013 |
∵∠A=m°,
∴∠A2013=
1 |
22013 |
故答案为:
1 |
2 |
1 |
22013 |

练习册系列答案
相关题目