题目内容

【题目】如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.

(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.

【答案】
(1)证明:∵点D,E分别是边BC,AB上的中点,

∴DE∥AC,AC=2DE,

∵EF=2DE,

∴EF∥AC,EF=AC,

∴四边形ACEF是平行四边形,

∴AF=CE;


(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:

∵∠ACB=90°,∠B=30°,

∴∠BAC=60°,AC= AB=AE,

∴△AEC是等边三角形,

∴AC=CE,

又∵四边形ACEF是平行四边形,

∴四边形ACEF是菱形.


【解析】(1)先由三角形中位线定理得出DE∥AC,AC=2DE,再由平行四边形的判定,得出四边形ACEF是平行四边形,由平行四边形的性质即可得到AF=CE;
(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得到四边形ACEF是菱形.
【考点精析】根据题目的已知条件,利用三角形中位线定理和平行四边形的判定与性质的相关知识可以得到问题的答案,需要掌握连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网