题目内容
如图,MN切⊙O于A点,AC为弦,BC为直径,∠CAN=65°,则∠BMA的度数为______.
连接OA,
∵BC是⊙O直径,
∴∠BAC=90°,
∵∠CAN=65°,
∴∠BAM=180°-90°-65°=25°,
∵MN是⊙O切线,
∴∠OAN=90°,
∴∠OAC=90°-65°=25°,
∴∠OAB=90°-25°=65°,
∵OA=OB,
∴∠OBA=∠OAB=65°,
∴∠BMA=∠OBA-∠BAM=65°-25°=40°,
故答案为:40°.
∵BC是⊙O直径,
∴∠BAC=90°,
∵∠CAN=65°,
∴∠BAM=180°-90°-65°=25°,
∵MN是⊙O切线,
∴∠OAN=90°,
∴∠OAC=90°-65°=25°,
∴∠OAB=90°-25°=65°,
∵OA=OB,
∴∠OBA=∠OAB=65°,
∴∠BMA=∠OBA-∠BAM=65°-25°=40°,
故答案为:40°.
练习册系列答案
相关题目