题目内容
【题目】在矩形中,的角平分线与交于点,的角平分线与交于点,若,,则的长为( )
A.B.C.D.
【答案】D
【解析】
先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可.
延长EF和BC,交于点G,
∵3DF=4FC,
∴,
∵矩形ABCD中,∠ABC的角平分线BE与AD交于点E,
∴∠ABE=∠AEB=45°,
∴AB=AE=7,
∴直角三角形ABE中,BE=,
又∵∠BED的角平分线EF与DC交于点F,
∴∠BEG=∠DEF,
∵AD∥BC,
∴∠G=∠DEF,
∴∠BEG=∠G,
∴BG=BE=,
∵∠G=∠DEF,∠EFD=∠GFC,
∴△EFD∽△GFC,
∴,
设CG=3x,DE=4x,则AD=7+4x=BC,
∵BG=BC+CG,
∴7+4x+3x=7,
解得x=1,
∴BC=7+4x=7+44=3+4,
故选:D.
练习册系列答案
相关题目