题目内容
【题目】阅读下列材料,解决问题:
在处理分数和分式问题时,有时由于分子比分母大,或者为了分子的次数告诉于分母的次数,在实际运算时往往难度比较大,这时我们可以将假分数(分式)拆分成一个整数(或整式)与一个真分数的和(或差)的形式,通过对简单式的分析来解决问题,我们称为分离整数法,此法在处理分式或整除问题时颇为有效,现举例说明.
材料1:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:9x+y
材料2:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
解:由分母x+1,可设x2﹣x+3=(x+1)(x+a)+b
则x2﹣x+3=(x+1)(x+a)+b=x2+ax+x+a+b=x2+(a+1)x+a+b
∵对于任意x上述等式成立.
∴解得:.
∴x﹣2.
这样,分式就拆分成一个整式x﹣2与一个分式的和的形式.
(1)将分式拆分成一个整式与一个分子为整数的分式的和的形式,则结果为 .
(2)已知整数x使分式的值为整数,则满足条件的整数x= ;
(3)已知一个六位整数能被33整除,求满足条件的x,y的值.
【答案】(1)x+7;(2)2或4或﹣10或16;(3),x=2、y=9;x=6、y=2; x=9、y=5.
【解析】
(1)将分子x2+6x-3化为(x-1)(x+7) +4,依据题意可解答;
(2)将分子2x2+5x-20化为(2x+11)+13,根据题意可解答;
(3)由题意得出:=即可知10x+y+4为33的倍数,据此可解答.
解:(1)
=
=
=
=
答案为:;
(2)
=
=
=
=
∵分式的值为整数,
∴是整数,
∴x-3=±1或x-3=±13,
解得:x=2或4或﹣10或16,
故答案为:2或4或﹣10或16;
(3)
=
=
=
∵整数能被33整除,
∴为整数,即10x+y+4=33k,(k为整数),
当k=1时,x=2、y=9符合题意;
当k=2时,x=6、y=2符合题意;
当k=3时,x=9、y=5符合题意.