题目内容
【题目】如图,△ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)试说明DF是⊙O的切线;
(2)若AC=3AE=6,求tanC.
【答案】
(1)
证明:连接OD,
∵OB=OD,
∴∠B=∠ODB,
∵AB=AC,
∴∠B=∠C,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)
解:连接BE,AD,
∵AB是直径,
∴∠AEB=90°,
∵AB=AC,AC=3AE=6,
∴AB=3AE=6,AE=2,
∴CE=4AE=8,
∴BE= =4 ,
∴tanC= = .
【解析】(1)连接OD,根据等边对等角性质和平行线的判定和性质证得OD⊥DF,从而证得DF是⊙O的切线;(2)根据圆周角定理、勾股定理得出BE=2 AE,CE=4AE,然后根据勾股定理求得BE=2 AE,根据三角函数的定义即可得到结论.
练习册系列答案
相关题目
【题目】某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭,8月份比7月份节约用水情况统计:
节水量(m3) | 0.2 | 0.3 | 0.4 | 0.5 |
家庭数(个) | 1 | 2 | 3 | 4 |
那么这10个家庭8月份比7月份的节水量的平均数是( )
A.0.5m3
B.0.4m3
C.0.35m3
D.0.3m3