题目内容

【题目】如图,△ABC中,AB=AC,以AB为直径的O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

(1)试说明DF是⊙O的切线;
(2)若AC=3AE=6,求tanC.

【答案】
(1)

证明:连接OD,

∵OB=OD,

∴∠B=∠ODB,

∵AB=AC,

∴∠B=∠C,

∴∠ODB=∠C,

∴OD∥AC,

∵DF⊥AC,

∴OD⊥DF,

∴DF是⊙O的切线;


(2)

解:连接BE,AD,

∵AB是直径,

∴∠AEB=90°,

∵AB=AC,AC=3AE=6,

∴AB=3AE=6,AE=2,

∴CE=4AE=8,

∴BE= =4

∴tanC= =


【解析】(1)连接OD,根据等边对等角性质和平行线的判定和性质证得OD⊥DF,从而证得DF是⊙O的切线;(2)根据圆周角定理、勾股定理得出BE=2 AE,CE=4AE,然后根据勾股定理求得BE=2 AE,根据三角函数的定义即可得到结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网