题目内容
【题目】CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,则BE_____CF;EF_____|BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件_____,使①中的两个结论仍然成立。
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想并给出理由。.
【答案】==∠α+∠BCA=180°
【解析】
(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可;
(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可.
(1)①如图1中,
E点在F点的左侧,
∵BE⊥CD,AF⊥CD,∠ACB=90,
∴∠BEC=∠AFC=90,
∴∠BCE+∠ACF=90,∠CBE+∠BCE=90,
∴∠CBE=∠ACF,
在△BCE和△CAF中,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CFCE=BEAF,
当E在F的右侧时,同理可证EF=AFBE,
∴EF=|BEAF|;
故答案为=,=.
②时,①中两个结论仍然成立;
证明:如图2中,
∵
∴∠CBE=∠ACF,
在△BCE和△CAF中,
∴△BCE≌△CAF(AAS),
∴BE=CF,CE=AF,
∴EF=CFCE=BEAF,
当E在F的右侧时,同理可证EF=AFBE,
∴EF=|BEAF|;
故答案为
(2)EF=BE+AF.
理由是:如图3中,
∵∠BEC=∠CFA=∠a,∠a=∠BCA,
又∵
∴∠EBC+∠BCE=∠BCE+∠ACF,
∴∠EBC=∠ACF,
在△BEC和△CFA中,
∴△BEC≌△CFA(AAS),
∴AF=CE,BE=CF,
∵EF=CE+CF,
∴EF=BE+AF.