题目内容
【题目】如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.
(1)求证:四边形ABED是菱形;
(2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
【答案】见解析
【解析】
试题(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
试题解析:梯形ABCD中,AD∥BC,
∴四边形ABED是平行四边形,
又AB=AD,
∴四边形ABED是菱形;
(2)∵四边形ABED是菱形,∠ABC=60°,
∴∠DEC=60°,AB=ED,
又EC=2BE,
∴EC=2DE,
∴△DEC是直角三角形,
练习册系列答案
相关题目