题目内容
【题目】如图,正方形中,,是对角线上的一个动点,若的最小值是10,则长为___________.
【答案】
【解析】
如图,连接DF,DE,DE交AC于F′,连接BF′.由BF+EF=EF+DF≤DE,推出当点F与点F′重合时,BF+EF的值最小,最小值为线段DE的长,由题意AE=AB,设AE=a,则AB=3a,在Rt△AEB中,根据AE2+AD2=DE2,构建方程即可解决问题.
如图,连接DF,DE,DE交AC于F′,连接BF′
∵四边形ABCD是正方形
∴BF=DF
∵BF+EF=EF+DFDE
∴当点F与点F′重合时,BF+EF的值最小,最小值为线段DE的长
由题意AE=AB,设AE=a,则AB=3a
在Rt△AEB中,∵AE2+AD2=DE2
∴a2+9a2=100
∴a=
∴AB=3a=
故答案为:
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整:收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分)如下:
甲 | 78 | 86 | 74 | 81 | 75 | 76 | 87 | 70 | 75 | 90 |
75 | 79 | 81 | 70 | 74 | 80 | 86 | 69 | 83 | 77 | |
乙 | 93 | 73 | 88 | 81 | 72 | 81 | 94 | 83 | 77 | 83 |
80 | 81 | 70 | 81 | 73 | 78 | 82 | 80 | 70 | 40 |
(1)整理、描述数据:按如分数段整理、描述这两组样本数据(请补全表格):
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 | __________ | 0 | 0 | __________ | __________ | __________ |
(说明:成绩80分及以上为生产技能优秀,70-79分为生产技能良好,60-69分为生产技能合格,60分以下为生产技能不合格)
分析数据:两组样本数据的平均数、中位数、众数如表所示(请补全表格):
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | __________ | 75 |
乙 | 78 | 80.5 | __________ |
得出结论:
(2)估计乙部门生产技能优秀的员工人数为__________;
(3)你认为__________部门员工的生产技能水平较高,说明理由(至少从两个不同的角度说明推断的合理性).