题目内容
【题目】如图所示,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD.
(1)求证:OE⊥DC.
(2)若∠AOD=120°,DE=2,求矩形ABCD的面积.
【答案】(1)证明见解析(2)4
【解析】
(1) 要证OE⊥DC,可先证四边形OCED是菱形.由DE∥AC,CE∥BD,可得四边形OCED是平行四边形;又因为ABCD是矩形,所以OC=OD.有一组邻边相等的平行四边形是菱形.
(2)由(1) 得出△ODC是等边三角形,所以 DC=OD=OC=2 ,由四边形ABCD是矩形,得到AC=2CO=4, 在Rt△ADC中,由勾股定理得AD=2 ,再利用矩形面积公式即可解答.
(1)证明:
∵DE∥AC,CE∥BD
∴DE∥OC,CE∥OD
∴四边形ODEC是平行四边形
∵四边形ODEC是矩形
∴OD=OC
∴四边形ODEC是菱形
∴OE⊥DC
(2)解:∵DE=2,由(1)知,四边形ODEC是菱形
∴OD=OC=DE=2
∵∠AOD=120°
∴∠DOC=60°
∴△ODC是等边三角形
∴DC=OD=OC=2
∵四边形ABCD是矩形
∴AC=2CO=4
在Rt△ADC中,由勾股定理得AD=2
∴S矩形ABCD=2×2=4
练习册系列答案
相关题目
【题目】研究“掷一枚图钉,钉尖朝上”的概率,两个小组用同一个图钉做试验进行比较,他们的统计数据如下:
掷图钉的次数 | 50 | 100 | 200 | 300 | 400 |
钉尖朝上 的次数 | |||||
第一小组 | 23 | 39 | 79 | 121 | 160 |
第二小组 | 24 | 41 | 81 | 124 | 164 |
(1)请你估计第一小组和第二小组所得的概率分别是多少?
(2)你认为哪一个小组的结果更准确?为什么?