题目内容

【题目】如图,在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E,F,DF与AC交于点M,DE与BC交于点N.
(1)如图1,若CE=CF,求证:DE=DF;

(2)如图2,在∠EDF绕点D旋转的过程中:
①探究三条线段AB,CE,CF之间的数量关系,并说明理由;
②若CE=4,CF=2,求DN的长.

【答案】
(1)

证明:∵∠ACB=90°,AC=BC,AD=BD,

∴∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,

∴∠DCE=∠DCF=135°,

在△DCE与△DCF中,

∴△DCE≌△DCF,

∴DE=DF;


(2)

解:①∵∠DCF=∠DCE=135°,

∴∠CDF+∠F=180°﹣135°=45°,

∵∠CDF+∠CDE=45°,

∴∠F=∠CDE,

∴△CDF∽△CED,

即CD2=CECF,

∵∠ACB=90°,AC=BC,AD=BD,

∴CD= AB,

∴AB2=4CECF;

②如图,过D作DG⊥BC于G,

则∠DGN=∠ECN=90°,CG=DG,

当CE=4,CF=2时,

由CD2=CECF得CD=2

∴在Rt△DCG中,CG=DG=CDsin∠DCG=2 ×sin45°=2,

∵∠ECN=∠DGN,∠ENC=∠DNG,

∴△CEN∽△GDN,

=2,

∴GN= CG=

∴DN= = =


【解析】(1)根据等腰直角三角形的性质得到∠BCD=∠ACD=45°,∠BCE=∠ACF=90°,于是得到∠DCE=∠DCF=135°,根据全等三角形的性质即可的结论;(2)①证得△CDF∽△CED,根据相似三角形的性质得到 ,即CD2=CECF,根据等腰直角三角形的性质得到CD= AB,于是得到AB2=4CECF;②如图,过D作DG⊥BC于G,于是得到∠DGN=∠ECN=90°,CG=DG,当CE=4,CF=2时,求得CD=2 ,推出△CEN∽△GDN,根据相似三角形的性质得到 =2,根据勾股定理即可得到结论.
【考点精析】掌握等腰直角三角形和勾股定理的概念是解答本题的根本,需要知道等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关题目

【题目】设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,记作y=f(x).在函数y=f(x)中,当自变量x=a时,相应的函数值y可以表示为f(a).
例如:函数f(x)=x2﹣2x﹣3,当x=4时,f(4)=42﹣2×4﹣3=5在平面直角坐标系xOy中,对于函数的零点给出如下定义:
如果函数y=f(x)在a≤x≤b的范围内对应的图象是一条连续不断的曲线,并且f(a).f(b)<0,那么函数y=f(x)在a≤x≤b的范围内有零点,即存在c(a≤c≤b),使f(c)=0,则c叫做这个函数的零点,c也是方程f(x)=0在a≤x≤b范围内的根.
例如:二次函数f(x)=x2﹣2x﹣3的图象如图1所示.

观察可知:f(﹣2)>0,f(1)<0,则f(﹣2).f(1)<0.所以函数f(x)=x2﹣2x﹣3在﹣2≤x≤1范围内有零点.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零点,﹣1也是方程x2﹣2x﹣3=0的根.
(1)观察函数y1=f(x)的图象2,回答下列问题:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范围内y1=f(x)的零点的个数是
(2)已知函数y2=f(x)=﹣ 的零点为x1 , x2 , 且x1<1<x2
①求零点为x1 , x2(用a表示);
②在平面直角坐标xOy中,在x轴上A,B两点表示的数是零点x1 , x2 , 点 P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,若a是整数,求抛物线y2的表达式并直接写出线段PQ长的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网