题目内容
【题目】在△ABC中,BC=AC,∠BCA=90°,P为直线AC上一点,过点A作AD⊥BP于点D,交直线BC于点Q.
(1)如图1,当P在线段AC上时,求证:BP=AQ;
(2)如图2,当P在线段CA的延长线上时,(1)中的结论是否成立?________(填“成立”或“不成立”)
(3)在(2)的条件下,当∠DBA=________时,存在AQ=2BD,说明理由.
【答案】(1)详见解析;(2)成立; (3)22.5°,理由详见解析.
【解析】试题分析:(1)首先根据内角和定理得出∠DAP=∠CBP,进而得出
△ACQ≌△BCP即可得出答案;
(2)延长BA交PQ于H,由于 得到 推出△AQC≌△BPC(ASA),即可得出结论;
(3)当时,存在根据等腰三角形的性质得到BP=2BD,通过△PBC≌△ACQ,根据全等三角形的性质即可得到结论.
试题解析:
(1)证明:∵∠ACB=∠ADB=90°,∠APD=∠BPC,
∴∠DAP=∠CBP,
在△ACQ和△BCP中
∴△ACQ≌△BCP(ASA),
∴BP=AQ
(2)成立,
理由:延长BA交PQ于H,
∠AQC=∠BQD,
∴∠CAQ=∠DBQ,
在△AQC和△BPC中,
∴△AQC≌△BPC(ASA),
∴AQ=BP,
故答案为:成立;
(3)22.5°,
当∠DBA=22.5°时,存在AQ=2BD,
理由:∵∠BAC=∠DBA+∠APB=45°,
∴∠PBA=∠APB=22.5°,
∴AP=AB,
∵AD⊥BP,
∴BP=2BD,
在△PBC与△QAC中,
∴△PBC≌△ACQ,
∴AQ=PB,
∴AQ=2BD.
故答案为:22.5°.
【题目】某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:
2010 | 2011 | 2012 | 2013 | 2014 |
234 | 233 | 245 | 247 | 256 |
(1)这五年的全年空气质量优良天数的中位数是________,平均数是________;
(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是________年(填写年份);
(3)求这五年的全年空气质量优良天数的方差________.