题目内容
【题目】(1)(观察思考):如图,线段AB上有两个点C、D,图中共有 条线段;
(2)(模型构建):如果线段上有m个点(包括线段的两个端点),则该线段上共有 条线段.请简要说明结论的正确性;
(3)(拓展应用):8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行 场比赛.类比(模型构建)简要说明.
【答案】(1)6;(2),理由见解析;(3)28,理由见解析.
【解析】
(1)从左向右依次固定一个端点A,C,D找出线段,最后求和即可;
(2)根据数线段的特点列出式子化简即可;
(3)将实际问题转化成(2)的模型,借助(2)的结论即可得出结论.
解:(1)以点A为左端点向右的线段有:线段AB、AC、AD,
以点C为左端点向右的线段有线段CD、CB,
以点D为左端点的线段有线段DB,
共有3+2+1=6条线段.
(2).
理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,
∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),
∴2x==m(m-1),
∴x=
(3)把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,
因此一共要进行 =28场比赛.
故答案为:(1)6;(2),理由见解析;(3)28,理由见解析.
【题目】某学校有1500名学生参加首届“我爱我们的课堂”为主题的图片制作比赛,赛后随机抽取部分参赛学生的成绩进行整理并制作成图表如下:
频率分布统计表 | 频率分布直方图 | ||
分数段 | 频数 | 频率 | |
60≤x<70 | 40 | 0.40 | |
70≤x<80 | 35 | b | |
80≤x<90 | a | 0.15 | |
90≤x<100 | 10 | 0.10 | |
请根据上述信息,解答下列问题:
(1)表中:a= ,b= ;
(2)请补全频数分布直方图;
(3)如果将比赛成绩80分以上(含80分)定为优秀,那么优秀率是多少?并且估算该校参赛学生获得优秀的人数。