题目内容
【题目】 我们已经学习了利用配方法解一元二次方程,其实配方法还有其它重要应用.
例:已知x可取任何实数,试求二次三项式2x2-12x+14的值的范围.
解:2x2-12x+14=2(x2-6x)+14=2(x2-6x+32-32)+14
=2[(x-3)2-9]+14=2(x-3)2-18+14=2(x-3)2-4.
∵无论x取何实数,总有(x-3)2≥0,∴2(x-3)2-4≥-4.
即无论x取何实数,2x2-12x+14的值总是不小于-4的实数.
问题:已知x可取任何实数,则二次三项式-3x2+12x-11的最值情况是( )
A.有最大值-1 B.有最小值-1 C.有最大值1 D.有最小值1
【答案】C
【解析】
试题分析:原式=-3(-4x)-11=-3(-4x+4-4)-11=-3+1,根据0可得:-30,则=-3+11,即代数式有最大值为1.
练习册系列答案
相关题目
【题目】四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形.
(1)当四边形ABCD分别是菱形、矩形、正方形时,相应的平行四边形EFGH一定是“菱形、矩形、正方形”中的哪一种?请将你的结论填入下表:
四边形ABCD | 菱形 | 矩形 | 正方形 |
平行四边形EFGH |
(2)反之,当用上述方法所围成的平行四边形EFGH分别是矩形、菱形、正方形时,相应的原四边形ABCD必须满足怎样的条件?
解:(1)直接在上表中填写
(2)请在下表中填写
平行四边形EFGH | 矩形 | 菱形 | 正方形 |
四边形ABCD |