题目内容
【题目】如图(1),为等腰三角形,,点是底边上的一个动点,,.
(1)用表示四边形的周长为 ;
(2)点运动到什么位置时,四边形是菱形,请说明理由;
(3)如果不是等腰三角形图(2),其他条件不变,点运动到什么位置时,四边形是菱形(不必说明理由).
【答案】(1);(2)当为中点时,四边形是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.
【解析】
(1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;
(2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;
(3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.
(1)∵PD∥AC,PE∥AB,
∴∠DPB=∠C,∠EPC=∠B,
∵AB=AC,
∴∠B=∠C,
∴∠B=∠DPB,∠C=∠EPC,
∴DB=DP,PE=EC,
∴四边形ADPE的周长是:AD+DP+PE+AE=AB+AC=2a;
(2)当P运动到BC中点时,四边形ADPE是菱形;
∵PD∥AC,PE∥AB,
∴四边形ADPE是平行四边形,
∴PD=AE,PE=AD,
∵PD∥AC,PE∥AB,
∴∠DPB=∠C,∠EPC=∠B,
∵P是BC中点,
∴PB=PC,
在△DBP和△EPC中,
,
∴△DBP≌△EPC(ASA),
∴DP=EC,
∵EC=PE,
∴DP=EP,
∴四边形ADPE是菱形;
(3)P运动到∠A的平分线上时,四边形ADPE是菱形,
∵PD∥AC,PE∥AB,
∴四边形ADPE是平行四边形,
∵AP平分∠BAC,
∴∠1=∠2,
∵AB∥EP,
∴∠1=∠3,
∴∠2=∠3,
∴AE=EP,
∴四边形ADPE是菱形.
【题目】某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 | 第八次 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 10 | 8 |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | 8 | 10 |
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙两名运动员8次测试成绩的方差;
(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.