题目内容
【题目】如图,⊙O是以AB为直径的圆,C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点F,连结CA,CB.
(1)求证:AC平分∠DAB;
(2)若⊙O的半径为5,且tan∠DAC= ,求BC的长.
【答案】
(1)证明:∵EF为切线,
∴OC⊥EF,
∵AE⊥EF,
∴AE∥OC,
∴∠EAC=∠OCA,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠OAC=∠OCA,
∴AC平分∠DAB;
(2)解:∵∠OAC=∠OCA,
∴tan∠OAC=tan∠DAC= ,
设BC=x,则AC=2x,
∴AB= x,
∴ x=10,解得x=2 ,
∴BC=2 .
【解析】(1)利用切线的性质得到OC⊥EF,而AE⊥EF,则可判定AE∥OC,利用平行线的性质得到∠EAC=∠OCA,加上∠OCA=∠OAC,于是得到∠OAC=∠OCA;(2)利用∠OAC=∠OCA得到tan∠OAC=tan∠DAC= ,设BC=x,则AC=2x,根据勾股定理得到AB= x,则 x=10,然后解方程求出x即可得到BC的长.
练习册系列答案
相关题目
【题目】某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其它四个类别进行了抽样调查(每位同学仅选一项),并根据调查结果制作了尚不完整的频数分布表:
类别 | 频数(人数) | 频率 |
文学 | m | 0.42 |
艺术 | 22 | 0.11 |
科普 | 66 | n |
其他 | 28 | |
合计 | 1 |
(1)表中m= , n=;
(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最少?
(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普读物的学生有多少人?