题目内容

【题目】如图,⊙O是以AB为直径的圆,C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点F,连结CA,CB.
(1)求证:AC平分∠DAB;
(2)若⊙O的半径为5,且tan∠DAC= ,求BC的长.

【答案】
(1)证明:∵EF为切线,

∴OC⊥EF,

∵AE⊥EF,

∴AE∥OC,

∴∠EAC=∠OCA,

∵OA=OC,

∴∠OCA=∠OAC,

∴∠OAC=∠OCA,

∴AC平分∠DAB;


(2)解:∵∠OAC=∠OCA,

∴tan∠OAC=tan∠DAC=

设BC=x,则AC=2x,

∴AB= x,

x=10,解得x=2

∴BC=2


【解析】(1)利用切线的性质得到OC⊥EF,而AE⊥EF,则可判定AE∥OC,利用平行线的性质得到∠EAC=∠OCA,加上∠OCA=∠OAC,于是得到∠OAC=∠OCA;(2)利用∠OAC=∠OCA得到tan∠OAC=tan∠DAC= ,设BC=x,则AC=2x,根据勾股定理得到AB= x,则 x=10,然后解方程求出x即可得到BC的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网