题目内容

【题目】如图①,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和SBOC , 记S=S四边形MAOC﹣SBOC , 求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2 , 点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】
(1)

解:令y=0代入y= x+4,

∴x=﹣3,

A(﹣3,0),

令x=0,代入y= x+4,

∴y=4,

∴C(0,4),

设抛物线F1的解析式为:y=a(x+3)(x﹣1),

把C(0,4)代入上式得,a=﹣

∴y=﹣ x2 x+4


(2)

解:如图①

设点M(a,﹣ a2 a+4)

其中﹣3<a<0

∵B(1,0),C(0,4),

∴OB=1,OC=4

∴SBOC= OBOC=2,

过点M作MD⊥x轴于点D,

∴MD=﹣ a2 a+4,AD=a+3,OD=﹣a,

∴S四边形MAOC= ADMD+ (MD+OC)OD

= ADMD+ ODMD+ ODOC

= +

= +

= ×3(﹣ a2 a+4)+ ×4×(﹣a)

=﹣2a2﹣6a+6

∴S=S四边形MAOC﹣SBOC

=(﹣2a2﹣6a+6)﹣2

=﹣2a2﹣6a+4

=﹣2(a+ 2+

∴当a=﹣ 时,

S有最大值,最大值为

此时,M(﹣ ,5);


(3)

解:如图②

由题意知:M′ ,B′(﹣1,0),A′(3,0)

∴AB′=2

设直线A′C的解析式为:y=kx+b,

把A′(3,0)和C(0,4)代入y=kx+b,

得:

∴y=﹣ x+4,

令x= 代入y=﹣ x+4,

∴y=2

由勾股定理分别可求得:AC=5,DA′=

设P(m,0)

当m<3时,

此时点P在A′的左边,

∴∠DA′P=∠CAB′,

时,△DA′P∽△CAB′,

此时, = (3﹣m),

解得:m=2,

∴P(2,0)

时,△DA′P∽△B′AC,

此时, = (3﹣m)

m=﹣

∴P(﹣ ,0)

当m>3时,

此时,点P在A′右边,

由于∠CB′O≠∠DA′E,

∴∠AB′C≠∠DA′P

∴此情况,△DA′P与△B′AC不能相似,

综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣ ,0).


【解析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣ a2 a+4),然后分别计算S四边形MAOC和SBOC , 过点M作MD⊥x轴于点D,则S四边形MAOC的值等于△ADM的面积与梯形DOCM的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:① ;② .本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.
【考点精析】关于本题考查的二次函数的最值和相似三角形的判定与性质,需要了解如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网