题目内容
【题目】如图①,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式;
(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC , 记S=S四边形MAOC﹣S△BOC , 求S最大时点M的坐标及S的最大值;
(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2 , 点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】
(1)
解:令y=0代入y= x+4,
∴x=﹣3,
A(﹣3,0),
令x=0,代入y= x+4,
∴y=4,
∴C(0,4),
设抛物线F1的解析式为:y=a(x+3)(x﹣1),
把C(0,4)代入上式得,a=﹣ ,
∴y=﹣ x2﹣ x+4
(2)
解:如图①
设点M(a,﹣ a2﹣ a+4)
其中﹣3<a<0
∵B(1,0),C(0,4),
∴OB=1,OC=4
∴S△BOC= OBOC=2,
过点M作MD⊥x轴于点D,
∴MD=﹣ a2﹣ a+4,AD=a+3,OD=﹣a,
∴S四边形MAOC= ADMD+ (MD+OC)OD
= ADMD+ ODMD+ ODOC
= +
= +
= ×3(﹣ a2﹣ a+4)+ ×4×(﹣a)
=﹣2a2
∴S=S四边形MAOC﹣S△BOC
=(﹣2a2﹣6a+6)﹣2
=﹣2a2﹣6a+4
=﹣2(a+ )2+
∴当a=﹣ 时,
S有最大值,最大值为
此时,M(﹣ ,5);
(3)
解:如图②
由题意知:M′ ,B′(﹣1,0),A′(3,0)
∴AB′=2
设直线A′C的解析式为:y=kx+b,
把A′(3,0)和C(0,4)代入y=kx+b,
得: ,
∴
∴y=﹣ x+4,
令x= 代入y=﹣ x+4,
∴y=2
∴
由勾股定理分别可求得:AC=5,DA′=
设P(m,0)
当m<3时,
此时点P在A′的左边,
∴∠DA′P=∠CAB′,
当 时,△DA′P∽△CAB′,
此时, = (3﹣m),
解得:m=2,
∴P(2,0)
当 时,△DA′P∽△B′AC,
此时, = (3﹣m)
m=﹣ ,
∴P(﹣ ,0)
当m>3时,
此时,点P在A′右边,
由于∠CB′O≠∠DA′E,
∴∠AB′C≠∠DA′P
∴此情况,△DA′P与△B′AC不能相似,
综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣ ,0).
【解析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣ a2﹣ a+4),然后分别计算S四边形MAOC和S△BOC , 过点M作MD⊥x轴于点D,则S四边形MAOC的值等于△ADM的面积与梯形DOCM的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:① ;② .本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.
【考点精析】关于本题考查的二次函数的最值和相似三角形的判定与性质,需要了解如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.