题目内容

在△ABC中AB=AC,AD为高,点E在AC上,BE交AD于F,EC:AE=1:3,则FD:AF=______.
如图,过点E作EGBC交AD于G,
∵EC:AE=1:3,
AE
AC
=
3
1+3
=
3
4

EG
CD
=
AG
AD
=
AE
AC
=
3
4

AG
DG
=
AE
EC
=3,
∵AB=AC,AD为高,
∴BD=CD,
∵EGBC,
GF
FD
=
EG
BD
=
EG
CD
=
3
4

设FD=4x,则GF=3x,
∴AG=3DG=3(GF+FD)=3(3x+4x)=21x,
∴AF=AG+GF=21x+3x=24x,
∴FD:AF=4x:24x=1:6.
故答案为:1:6.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网