题目内容
在△ABC中AB=AC,AD为高,点E在AC上,BE交AD于F,EC:AE=1:3,则FD:AF=______.
如图,过点E作EG∥BC交AD于G,
∵EC:AE=1:3,
∴
=
=
,
∴
=
=
=
,
=
=3,
∵AB=AC,AD为高,
∴BD=CD,
∵EG∥BC,
∴
=
=
=
,
设FD=4x,则GF=3x,
∴AG=3DG=3(GF+FD)=3(3x+4x)=21x,
∴AF=AG+GF=21x+3x=24x,
∴FD:AF=4x:24x=1:6.
故答案为:1:6.
∵EC:AE=1:3,
∴
AE |
AC |
3 |
1+3 |
3 |
4 |
∴
EG |
CD |
AG |
AD |
AE |
AC |
3 |
4 |
AG |
DG |
AE |
EC |
∵AB=AC,AD为高,
∴BD=CD,
∵EG∥BC,
∴
GF |
FD |
EG |
BD |
EG |
CD |
3 |
4 |
设FD=4x,则GF=3x,
∴AG=3DG=3(GF+FD)=3(3x+4x)=21x,
∴AF=AG+GF=21x+3x=24x,
∴FD:AF=4x:24x=1:6.
故答案为:1:6.
练习册系列答案
相关题目