题目内容
【题目】如图所示,秋千链子的长度为4 m,当秋千向两边摆动时,两边的最大摆动角度均为30°.则它摆动至最高位置与最低位置的高度之差为( )
A. 2 m B. (4-) m C. (4-2) m D. (4-2) m
【答案】C
【解析】
设秋千摆至最低点时的位置为C,连结AB,交OC于D.当秋千摆至最低点C时,点C为弧AB的中点,由垂径定理的推论知AB⊥OC,AD=BD,再解直角△AOD,求得OD,进而求出DC即可.
如图,设秋千摆至最低点时的位置为C,连结AB,交OC于D.
∵点C为弧AB的中点,O为圆心,
∴AB⊥OC,AD=BD,弧AC=弧BC,
∵∠AOB=60°,
∴∠AOC=30°.
∵OA=OB=OC=4,
∴AD=OA=2,OD=AD=,
∴DC=OC-OD=4-2,
即它摆动至最高位置与最低位置的高度之差为(4-2)m.
故选:C.
练习册系列答案
相关题目