题目内容
【题目】如图在△ABC 中,AB、AC 边的垂直平分线相交于点 O,分别交 BC 边于点 M、N,连接 AM,AN.
(1)若△AMN 的周长为 6,求 BC 的长;
(2)若∠MON=30°,求∠MAN 的度数;
(3)若∠MON=45°,BM=3,BC=12,求 MN 的长度.
【答案】(1)6;(2)120°(3)5.
【解析】
(1)根据垂直平分线的性质可得BM=AM,CN=AN,再根据三角形的周长即可求出BC;
(2)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN;
(3)设射线OM交AB于E,射线ON交AC于F,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN,设MN=x,根据勾股定理列出方程求出x即可.
解:(1)∵AB、AC 边的垂直平分线相交于点 O,分别交 BC 边于点 M、N,
∴BM=AM,CN=AN
∵△AMN 的周长为 6,
∴AM+AN+MN=6
∴BC=BM+MN+CN= AM+MN+AN =6;
(2)设射线OM交AB于E,射线ON交AC于F,
在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=150°
∴∠B+∠C=180°-∠BAC=30°
∵BM=AM,CN=AN
∴∠MAB=∠B,∠NAC=∠C
∴∠MAB+∠NAC=30°
∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;
(3)设射线OM交AB于E,射线ON交AC于F,
在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=135°
∴∠B+∠C=180°-∠BAC=45°
∵BM=AM=3,CN=AN
∴∠MAB=∠B,∠NAC=∠C
∴∠MAB+∠NAC=45°
∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°
设MN=x,则AN =CN=BC-BM-MN=9-x
在Rt△AMN中,MN2=AM2+AN2
即x2=32+(9-x)2
解得:x=5
即MN=5