题目内容

【题目】如图在ABC 中,ABAC 边的垂直平分线相交于点 O,分别交 BC 边于点 MN,连接 AMAN

1)若AMN 的周长为 6,求 BC 的长;

2)若∠MON=30°,求∠MAN 的度数;

3)若∠MON=45°BM=3BC=12,求 MN 的长度.

【答案】16;(2120°(35

【解析】

1)根据垂直平分线的性质可得BM=AMCN=AN,再根据三角形的周长即可求出BC

2)设射线OMABE,射线ONACF,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN

3)设射线OMABE,射线ONACF,根据四边形的内角和,即可求出∠EAF,再根据三角形的内角和,即可求出∠B+∠C,然后根据等边对等角即可求出∠MAB+∠NAC,从而求出∠MAN,设MN=x,根据勾股定理列出方程求出x即可.

解:(1)∵ABAC 边的垂直平分线相交于点 O,分别交 BC 边于点 MN

BM=AMCN=AN

AMN 的周长为 6

AMANMN=6

BC=BMMNCN= AMMNAN =6

2)设射线OMABE,射线ONACF

在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=150°

∴∠B+∠C=180°-∠BAC=30°

BM=AMCN=AN

∴∠MAB=B,∠NAC=C

∴∠MAB+∠NAC=30°

∴∠MAN=EAF-(∠MAB+∠NAC=120°;

3)设射线OMABE,射线ONACF

在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=135°

∴∠B+∠C=180°-∠BAC=45°

BM=AM=3CN=AN

∴∠MAB=B,∠NAC=C

∴∠MAB+∠NAC=45°

∴∠MAN=EAF-(∠MAB+∠NAC=90°

MN=x,则AN =CN=BCBMMN=9x

RtAMN中,MN2=AM2AN2

x2=32+(9x2

解得:x=5

MN=5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网