题目内容

【题目】如图,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=2 ,OH=1,则∠APB的度数是

【答案】60°
【解析】解:连接OA,OB,
∵OH⊥AB,AB=2
∴AH= AB=
∵OH=1,
∴tan∠AOH =
∴∠AOH=60°,
∴∠AOB=2∠AOH=120°,
∴∠APB= ∠AOB= ×120°=60°.
所以答案是:60°.

【考点精析】认真审题,首先需要了解垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧),还要掌握圆周角定理(顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网