题目内容
探究性问题:
=
-
,
=
-
,
=
-
,则
=______.
试用上面规律解决下面的问题:
(1)计算
+
+
;
(2)已知
+(ab-2)2=0,求
+
+…+
的值.
1 |
1×2 |
1 |
1 |
1 |
2 |
1 |
2×3 |
1 |
2 |
1 |
3 |
1 |
3×4 |
1 |
3 |
1 |
4 |
1 |
n(n+1) |
试用上面规律解决下面的问题:
(1)计算
1 |
(x+1)(x+2) |
1 |
(x+2)(x+3) |
1 |
(x+3)(x+4) |
(2)已知
a-1 |
1 |
ab |
1 |
(a+1)(b+1) |
1 |
(a+2010)(b+2010) |
根据已知的三个等式,总结规律得
=
-
,
(1)原式=
+
+
=
-
+
-
+
-
=
-
=
;
(2)由
+(ab-2)2=0得:a-1=0且ab-2=0,
解得a=1且ab=2,
所以b=2,
则原式=
+
+…+
,
=
+
+…+
,
=1-
+
-
+
-
+…+
-
+
-
=1-
=
.
故答案为:
-
.
1 |
n(n+1) |
1 |
n |
1 |
n+1 |
(1)原式=
1 |
(x+1)(x+2) |
1 |
(x+2)(x+3) |
1 |
(x+3)(x+4) |
=
1 |
x+1 |
1 |
x+2 |
1 |
x+2 |
1 |
x+3 |
1 |
x+3 |
1 |
x+4 |
1 |
x+1 |
1 |
x+4 |
3 |
(x+1)(x+4) |
(2)由
a-1 |
解得a=1且ab=2,
所以b=2,
则原式=
1 |
ab |
1 |
(a+1)(b+1) |
1 |
(a+2010)(b+2010) |
=
1 |
1×2 |
1 |
2×3 |
1 |
2011×2012 |
=1-
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
2010 |
1 |
2011 |
1 |
2011 |
1 |
2012 |
1 |
2012 |
2011 |
2012 |
故答案为:
1 |
n |
1 |
n+1 |
练习册系列答案
相关题目