题目内容

【题目】ABC中,已知AB=AC,BAC=90°,E为边AC上一点,连接BE.

(1)如图1,若ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;

(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

【答案】(1) (2)证明见解析

【解析】

(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.

解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.

RtABE 中,∵OB=OE,

BE=2OA=2,

MB=ME,

∴∠MBE=MEB=15°,

∴∠AME=MBE+MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,

AB2+AE2=BE2

x= (负根已经舍弃),

AB=AC=(2+

BC= AB= +1.

CQAC,交 AF 的延长线于 Q,

AD=AE ,AB=AC ,BAE=CAD,

∴△ABE≌△ACD(SAS),

∴∠ABE=ACD,

∵∠BAC=90°,FGCD,

∴∠AEB=CMF,

∴∠GEM=GME,

EG=MG,

∵∠ABE=CAQ,AB=AC,BAE=ACQ=90°,

∴△ABE≌△CAQ(ASA),

BE=AQ,AEB=Q,

∴∠CMF=Q,

∵∠MCF=QCF=45°,CF=CF,

∴△CMF≌△CQF(AAS),

FM=FQ,

BE=AQ=AF+FQ=AF=FM,

EG=MG,

BG=BE+EG=AF+FM+MG=AF+FG.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网