题目内容
【题目】如图,在ABCD中, 对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).
A.AE=CFB.DE=BFC.D.
【答案】B
【解析】
根据平行四边形的性质以及平行四边形的判定定理即可作出判断.
解:A、∵在平行四边形ABCD中,OA=OC,OB=OD,
若AE=CF,则OE=OF,
∴四边形DEBF是平行四边形;
B、若DE=BF,没有条件能够说明四边形DEBF是平行四边形,则选项错误;
C、∵在平行四边形ABCD中,OB=OD,AD∥BC,
∴∠ADB=∠CBD,
若∠ADE=∠CBF,则∠EDB=∠FBO,
∴DE∥BF,
则△DOE和△BOF中,,
∴△DOE≌△BOF,
∴DE=BF,
∴四边形DEBF是平行四边形.故选项正确;
D、∵∠AED=∠CFB,
∴∠DEO=∠BFO,
∴DE∥BF,
在△DOE和△BOF中,,
∴△DOE≌△BOF,
∴DE=BF,
∴四边形DEBF是平行四边形.故选项正确.
故选B.
练习册系列答案
相关题目