题目内容
【题目】如图,在平面直角坐标系中,以点A(0,2)为圆心,2为半径的圆交y轴于点B.已知点C(2,0),点D为⊙A上的一动点,以CD为斜边,在CD左侧作等腰直角三角形CDE,连结BC,则△BCE面积的最小值为_____.
【答案】4﹣.
【解析】
设出点E(m,n),先构造出△CME≌△END(AAS),进而确定出点D(m+n,n+2-m),再利用AD=2,建立方程,利用两点间的距离得出点E是以O为圆心,为半径的圆上,即可得出结论.
解:如图,设E(m,n),
过点E作EM⊥x轴于M,过点作DN⊥EM,交ME的延长线于N,
∴∠CME=∠END=90°,
∴∠MCE+∠MEC=90°,
∵△CDE是等腰直角三角形,
∴CE=DE,∠CED=90°,
∴∠NED+∠MEC=90°,
∴∠MCE=∠NED,
∴△CME≌△END(AAS),
∴EM=DN=n,CM=EN=2﹣m,
∴D(m+n,n+2﹣m),
∵点D在以A(0,2)为圆心半径为2的圆上,
连接AD,则AD=2,
∴=2,
∴=,
即,
∴点E在以点O为圆心,为半径的圆上,(到定点(0,0)的距离是的点的轨迹),
∵以点A(0,2)为圆心,2为半径的圆交y轴于点B,
∴B(0,4),
∴OB=4,
∵C(2,0),
∴OC=2,
∴BC=2,
过点O作OH⊥BC于H,
∴OH==,
设点E到BC的距离为h,
∴S△BCE=BCh=×h=h,
∴h最小时,S△BCE最小,而h最小=OH﹣=﹣2,
∴S△BCE最小=()=4﹣,
故答案为:4﹣.
【题目】如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.
【题目】小明投资销售一种进价为每件20元的护眼台灯.经过市场调研发现,每月销售的数量y(件)是售价x(元/件)的一次函数,其对应关系如表:
x/(元/件) | 22 | 25 | 30 | 35 | … |
y/件 | 280 | 250 | 200 | 150 | … |
在销售过程中销售单价不低于成本价,物价局规定每件商品的利润不得高于成本价的60%,
(1)请求出y关于x的函数关系式.
(2)设小明每月获得利润为w(元),求每月获得利润w(元)与售价x(元/件)之间的函数关系式,并确定自变量x的取值范围.
(3)当售价定为多少元/件时,每月可获得最大利润,最大利润是多少?