题目内容
20、计算与化简:
(1)-(m-2n)+5(m+4n)-2(-4m-2n);
(2)(2x+7)(3x-4)+(3x+5)(3-2x);
(3)(x+2y-1)(x-2y+1);
(4)(a+2b-1)2.
(1)-(m-2n)+5(m+4n)-2(-4m-2n);
(2)(2x+7)(3x-4)+(3x+5)(3-2x);
(3)(x+2y-1)(x-2y+1);
(4)(a+2b-1)2.
分析:(1)去括号,注意符号的变化,然后合并同类项;
(2)先将因式展开,然后合并同类项,进行求解;
(3)可运用平方差公式进行求解;
(4)可将a+2b先看作一个整体进行计算,然后利用完全平方公式展开.
(2)先将因式展开,然后合并同类项,进行求解;
(3)可运用平方差公式进行求解;
(4)可将a+2b先看作一个整体进行计算,然后利用完全平方公式展开.
解答:解:(1)-(m-2n)+5(m+4n)-2(-4m-2n),
=-m+2n+5m+20n+8m+4n,
=26n+12m;
(2)(2x+7)(3x-4)+(3x+5)(3-2x),
=6x2-8x+21x-28-6x2-10x+9x+15,
=12x-13;
(3)(x+2y-1)(x-2y+1),
=[x+(2y-1)][x-(2y-1)]
=x2-(2y-1)2
=x2-4y2+4y-1;
(4)(a+2b-1)2,
=[(a+2b)-1]2,
=(a+2b)2-2(a+2b)+1,
=a2+4b2+1+4ab-2a-4b.
=-m+2n+5m+20n+8m+4n,
=26n+12m;
(2)(2x+7)(3x-4)+(3x+5)(3-2x),
=6x2-8x+21x-28-6x2-10x+9x+15,
=12x-13;
(3)(x+2y-1)(x-2y+1),
=[x+(2y-1)][x-(2y-1)]
=x2-(2y-1)2
=x2-4y2+4y-1;
(4)(a+2b-1)2,
=[(a+2b)-1]2,
=(a+2b)2-2(a+2b)+1,
=a2+4b2+1+4ab-2a-4b.
点评:本题考查了单项式乘多项式,多项式的乘法,完全平方公式,熟练掌握运算法则是解题的关键,要细心进行计算.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目